

Precision Oncology Through Synthetic Lethality

January 2025

Forward-Looking Statements

Certain information contained in this presentation includes "forward-looking statements", within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, related to our clinical trials, regulatory submissions and strategic plans. We may, in some cases use terms such as "predicts," "believes," "potential," "continue," "anticipates," "estimates," "expects," "plans," "intends," "may," "could," "might," "likely," "will," "should" or other words that convey uncertainty of the future events or outcomes to identify these forward-looking statements. The forward-looking statements are based on current beliefs and expectations of our management team that involve risks, potential changes in circumstances, assumptions, and uncertainties. Any or all of the forward-looking statements may turn out to be wrong or be affected by inaccurate assumptions our management team might make or by known or unknown risks and uncertainties. These forward-looking statements are subject to risks and uncertainties including, without limitation, risks related to the success and timing of our clinical trials or other studies and the other risks set forth in our filings with the U.S. Securities and Exchange Commission, including our Annual Reports on Form 10-K and Quarterly Reports on Form 10-Q. Forward-looking statements regarding our product candidates are also subject to additional risks and uncertainties, including without limitation, with respect to: our dependence on additional financing to fund our operations and complete the development and commercialization of our product candidates, and the risks that raising such additional capital may restrict our operations or require us to relinquish rights to our technologies or product candidates; our limited history and preclinical status of the assets we acquired from Atrin Pharmaceuticals Inc.; our business plan or the likelihood of the successful implementation of such business plan; the timing of initiation of planned clinical trials for our product candidates; the future success of such trials; the successful implementation of our research and development programs and collaborations and the interpretation of the results and findings of such programs and collaborations and whether such results are sufficient to support the future success of our product candidates; the success, timing and cost of our anticipated clinical trials for our current product candidates; the timing of initiation, futility analyses, data presentation, reporting and publication and receipt of interim results (including, without limitation, any preclinical results or data); any statements about our understanding of product candidates mechanisms of action and interpretation of preclinical and early clinical results from its clinical development programs and any collaboration studies; and other factors, including legislative, regulatory, political and economic developments not within our control. For all these reasons, actual results and developments could be materially different from those expressed in or implied by our forward-looking statements. You are cautioned not to place undue reliance on these forward-looking statements, which are made only as of the date of this presentation. We undertake no obligation to update such forward-looking statements to reflect subsequent events or circumstances, except to the extent required by law or regulation.

Aprea Therapeutics (NASDAQ: APRE)

Precision Oncology via Novel Synthetic Lethality Therapeutics

All programs address significant unmet medical need, are synergistic with other anticancer therapies, and potentially differentiated in safety and tolerability

WEE1 Inhibitor: APR-1051	ATR Inhibitor: ATRN-119	DDR Inhibitor: Undisclosed
 Best in class, next generation Well clinically validated target Pre-clinical proof-of-principle Highly potent and selective anti-tumor activity Minimal off-target effect Ovarian cancer with Cyclin E over expression (OVCAR-3) Favorable pharmacokinetics Phase 1 study – enrolling 4th cohort No hematologic toxicity observed Safety/efficacy data expected H1 2025 	 First macrocyclic ATR inhibitor Highly selective with continuous daily dosing Pre-clinical proof-of-principle Anti-tumor activity at nanomolar concentration Preserved hematologic safety profile Phase 1/2a – ongoing Approaching therapeutic dose No hematologic toxicity observed BID regimen added Readout H2 2025 	 Lead optimization Target identified from our RepliBiom discovery platform Identify lead candidate by year-end 2024

Robust DDR Development Pipeline Milestones

2024-2026 Anticipated Clinical Milestones

Synthetic Lethality

- Cancer cell death only upon the loss of function of two codependent pathways
- DNA Damage Response (DDR) allows cells to pause and self repair during replication (mitosis) overcoming affected pathway
- Inhibition of DDR leads to mitotic catastrophe and cell death
- ATR and WEE1 inhibitors are integral to stopping DDR and are emerging targets for cancer cell death
- Builds on scientific innovation led by Aprea founder and key personnel¹

Strong Drug Development and Commercial Expertise

Leaders in Synthetic Lethality and Targeted Therapy

Management

Board of Directors

Richard Peters, M.D., Ph.D.	Oren Gilad, Ph.D.	Jean-Pierre Bizzari, M.D.
Chairman of the Board	President and CEO	Director
Marc Duey	Michael Grissinger	Gabriela Gruia, M.D.
Director	Director	Director
John Henneman	Rifat Pamukcu, M.D.	Bernd R. Seizinger, M.D., Ph.D.
Director	Director	Director

WEE1 Inhibitor: APR-1051

Potentially Differentiated Clinical Stage WEE1i

WEE1 – Clinically Validated Target: An Unmet Medical Need

Multiple Phase 2 Studies Show Substantial Single-Agent Activity Of A WEE1 Inhibitor (Adavosertib¹)

Phase 2 Study	Indication	Evaluable Patients N	ORR	PFS	
NCT03668340 ²	Recurrent uterine serous carcinoma	34	29.4% 1 CR 9 PR	mPFS – 6.1 months PFS6 – 16 Pt (47.1%)	
IGNITE ³	Recurrent high-grade, serous ovarian cancer with CCNE1 overexpression with (Cohort 1) and without (Cohort 2) gene amplification	79 Cohort 1 - 21 Cohort 2 - 58	Cohort 1: Cohort 2: 38% 45% 7 PR 3 CR 1 CA125 18 PR 5 CA125	No PD for \ge 18 weeks: Cohort 1: 53% Cohort 2: 48%	
NCT03253679 ⁴	Refractory solid tumors harboring CCNE1 amplification	30 Ovarian - 14, Breast - 3, Uterine - 3, Other - 10	All Pt: 27% (8 PR) Ovarian Pt: 36% (5 PR)	mPFS: All Pt: 4.1 Ovarian Pt: 6.3	

WEE1 Inhibitors have been associated with significant Grade ≥3 hematological, GI and CV toxicities

The Need – a highly efficient WEE1 inhibitor with an improved safety and tolerability profile

Examples for Phase 2 Studies with Adavosertib as monotherapy

Fu et al, J Clin Oncol. 2023 Mar 20; 41(9): 1725-1734.

- ¹ AZD-1775. AstraZeneca announced in July 2022 the discontinuation of development of AZD-1775 due to its tolerability profile
- ² Phase II Study of the WEE1 Inhibitor Adavosertib in Recurrent Uterine Serous Carcinoma, Liu et al, J Clin Oncol. 2021;39:1531–9.
- ³ IGNITE: A phase II signal-seeking trial of Adavosertib targeting recurrent high-grade, serous ovarian cancer with cyclin E1 overexpression with and without gene amplification. Au-Yeung et al, *Int J Gynecol Cancer* 2023;33(Suppl 4):A1–A278

⁴ Multicenter Phase II Trial of the WEE1 Inhibitor Adavosertib in Refractory Solid Tumors Harboring CCNE1 Amplification,

APR-1051 Potentially Best in Class WEE1 Inhibitor

Potent and Structurally Differentiated, with High Selectivity to Limit Off-target Toxicity

APR-1051: Potentially Best-in-Class WEE1 Inhibitor

Potent WEE1i that Does Not Substantially Inhibit PLK1, PLK2 or PLK3

APREA

THERAPEUTICS

Studies Show PLK1 Suppression is Associated with Sepsis-Induced Loss of Intestinal Barrier Function

- ² PLK1 protects intestinal barrier function in sepsis: A translational research, Cao et al, Cytokine (2023).
- ³ PLK1 protects intestinal barrier function in sepsis: A translational research, Cao et al, *Molecular Medicine* (2022).
- ⁴ LncRNA DANCR improves the dysfunction of the intestinal barrier and alleviates epithelial injury by targeting the

miR-1306-5p/PLK1 axis in sepsis, Wang et al., Cell Biology International (2021).

APREA

THERAPEUTICS

PLK1 Inhibition Reduces Cytotoxic Effects of WEE1 Inhibitors

Minimal PLK1 Co-inhibition Enables Full Therapeutic Potential Of APR-1051

APR-1051 Preclinical Data Highlight Potentially Favorable PK Properties

Based on Pre-clinical Studies, APR-1051 Shows Potentially Favorable Drug Exposure

	APREA THERAPEUTICS	zental		is	AstraZeneca		ca
	APR-1051 ¹	Zentalis Azenosertib (ZN-c3) ²			AstraZeneca Adavosertib (AZD-1775) ²		
Dose (mg/kg/d)	10	20	40	80	20	40	80
C _{max} ng/ml	1,460	1,167	1,997	5,100	635	2,460	4,703
T _{max} hr	3	1	1	1	1	1	1
AUC ₀₋₂₄ , ng*hr/ml	16,739	4,863	17,088	39,722	1,494	6,313	13,408

Note: Head-to-head studies have not been conducted ¹ Data from an exploratory formulation of APR-1051 administered to fasted Balb/c mice ² Data from study in A-427 NSCLC xenograft model as reported in Zentalis Corporate Overview, March 2022

AACR-NCI-EORTC Meeting, Poster C147, 2023

APR-1051 Shows Negligible Inhibition of hERG Channels

QT prolongation AEs were reported with some competitor WEE1 inhibitors

In vitro kinase assays IC50		Average WEE1 kinase IC50	hERG inhibition IC50		Average hERG IC50	Fold difference between kinase IC50 and hERG IC50
LanthaScreen (Thermo)	Hotspot (Reaction Biology)		HEK293 cells (Medicilon)	CHO cells (WuXi)		hERG inhibition over WEE1 kinase inhibition
2.2 nM	41.4 nM	21.8 nM	8,840 nM	660 nM	4,750 nM	218-fold (range 16- to 3,946-fold)

No ECG changes related to APR-1051 were observed in IND enabling studies Potential absence of QT prolongation at doses that significantly inhibit WEE1

APR-1051 Demonstrated Potentially Compelling Anti-tumor Activity

N=7 mice per group, APR-1051, 30 mg/kg/day

Pre-clinical studies with APR-1051 Data on file

APR-1051 Suppresses Tumor Growth with Little Effect on RBCs and Body Weight

OVCAR Xenograft Tumor Model in Female Nude Mice

WEE1 Inhibitor: APR-1051

ACESOT-1051: Clinical Proof-of-Concept

ACESOT-1051: Clinical Study Overview

Multi-center, Open-Label Phase1 Single-Agent Dose Escalation and Dose Selection Optimization

Oral APR-1051 is administered once-daily for 28-day cycles Primary objectives: Safety, DLT, MTD/MAD, RP2D

Secondary objectives: Pharmacokinetics, Antitumor activity (RECIST/PCWG3)

Exploratory objectives: Pharmacodynamics

ACESOT-1051: Study Design

ACESOT-1051: Summary of all-cause AEs

Update - October 7, 2024

APR-1051: Summary

Potential best in class WEE1 inhibitor

- High potency for WEE1 inhibition in vitro
- Low off-target inhibition of the PLK family of kinases
- Suppresses growth of CCNE1-amplified HGSOC xenografted tumors and relatively well-tolerated in mice

ACESOT-1051: First-In-Human Study (NCT06260514)

- Accelerated titration dose escalation completed, fourth cohort now enrolling
- Safe and well tolerated to date with no hematologic toxicity observed
- Biomarker-driven study in patients with advanced/metastatic solid tumors
- Targeted gene alterations include CCNE1, CCNE2, FBXW7, PPP2R1A, or KRAS-G12 with TP53
- Open label data expected H2 2025
- MD Anderson Cancer Center lead study site, with up to 10 sites in U.S.

ATR Inhibitor: ATRN-119

Potentially Differentiated Clinical Stage ATRi

ATRN-119: First and Only Macrocyclic ATR Inhibitor¹

Macrocycles: A Well-Evolved Approach for PIK-Related Kinase Inhibition (e.g., rapamycin and mTOR)²⁻⁴

Benefits of Unique Cyclic Skeleton Structure vs Competitors' First-Generation Acyclic Structure

Macrocycles restrict number of conformations formed for increased selectivity

Potential advantages for ATRN-119:

Increased selectivity

Improved tolerability

Improved tolerability

More efficacious dosing

¹ Based on company knowledge
² Brown, EJ et al, (1994) *Nature*³ Brown, EJ et al, (1995) *Nature*⁴ Brown, EJ and SL Schreiber, (1996) *Cell*

Reported Challenges with Other ATR Inhibitors

First Generation Compounds Share Similar Core, Backbone, Toxicity, and Intermittent Dosing Schedule

Note: Head-to-head studies with ATRN-119 have not been conducted

- ¹ Phase I study of ATR inhibitor, AZD6738, as monotherapy in advanced solid tumors (PATRIOT part A, B), Dillon et al, Ann. Oncol. 2019:30 (supplement 5), Pages v165-v166
- ² Poster CT084: A Phase I dose-escalation study of ATR inhibitor monotherapy with AZD6738 in advanced solid tumors (PATRIOT Part A), AACR 2017
- ³ First-in-Human Trial of the Oral Ataxia Telangiectasia and RAD3-Related (ATR) Inhibitor BAY 1895344 in Patients with Advanced Solid Tumors, Yap et al, *Cancer Discov.* 2021;11:80-91 and 2019 ASCO Poster, De-Bono et al.

⁴ Camonsertib in DNA damage response-deficient advanced solid tumors: phase 1 trial results, Yap et al. Nature Medicine 2023;29:1400-1411

ATRN-119: Potential Best-in-Class Oral ATR Inhibitor Structurally Differentiated Core, Backbone and Toxicity Profile

ATRN-119 potentially the preferred ATRi both as a single agent and in combination with standard-of-care therapies

ATRN-119 Daily Dosing Supports Potential Continuous Tumor Suppression

Intermittent Dosing May Lead to Tumor Resistance

ATR Inhibitor: ATRN-119

ABOYA-119: Clinical Proof-of-Concept

ABOYA-119: Phase 1/2a - Study Overview

A Phase 1/2a, Open-Label, Safety, Pharmacokinetic, and Preliminary Efficacy Study of Oral ATRN-119 in Patients with Advanced Solid Tumors

Sites:

5 US sites for dose escalation

- University of Pennsylvania
- Mary Crowley Cancer Research
- University Hospitals Cleveland Medical Center
- Yale Cancer Center
- NEXT Oncology

Patient enrollment: Up to 132 patients in total

- Escalation phase: up to 72 patients
- Expansion phase: up to 60 patients

ATRN-119 is an oral ATR kinase inhibitor given daily

Patient population:

Male or female subjects 12 years of age or older with solid tumors harboring specific DDR mutations per NGS

Objectives:

Primary

- Safety, MTD, RP2D
- Pharmacokinetics

Secondary

 Antitumor activity (RECIST/PCWG3)

Exploratory

 Association between identified mutations and clinical outcomes

ABOYA-119: Clinical Study Design

Part 1. Dose escalation (up to 72 patients)

Part 2. Dose expansion (up to 60 patients)

ATRN-119 Steady State Plasma Concentrations (Cycle 1 Day 7)

ATRN-119 Exhibits Near-dose Proportional Exposure Following Oral Administration

- T_{max} is approximately 2 hours and the half-life is estimated between 4-6 hours
- The duration of systemic exposure substantially increases with each dose level

ABOYA-119 Summary of Duration of Treatment

Update – Oct 7, 2024

© 2024 Aprea Therapeutics, Inc. All Rights Reserved

ABOYA-119: Summary of Related Adverse Events

Update – October 2, 2024

No ATRN-119 Related SAE or Grade 4 Adverse Events Reported

ATRN-119: Summary

First and only macrocyclic ATR inhibitor

- Potentially differentiated from other ATR inhibitors in selectivity and toxicity profile
- Continuous dosing provides increased drug exposure
- Strong tumor control observed in vivo, including in challenging genetic backgrounds
- Daily oral dosing provides potential continuous tumor suppression

ABOYA-119: Ongoing Phase 1/2a Clinical Study (NCT04905914)

- Patients with advanced solid tumors harboring specific DDR mutations
- Well tolerated with no hematologic toxicity reported
- Near-dose proportional exposure following oral administration
- Preliminary signs of clinical benefit already observed at low doses
- Potential efficacy data readout in H2 2025

Aprea Therapeutics (NASDAQ: APRE)

Intellectual Property Portfolio Financial Summary & Capitalization

Investment Highlights

Strong Intellectual Property Portfolio

Family 1: Ataxia Telengiectasia and Rad3-Related (ATR) Protein Kinase Inhibitors

- Macrocyclic inhibitors of ATR & methods of using them to treat various cancers, filed on Oct. 13th, 2015
- Patents granted in AU, BR, CA, CN, EP, IL, IN, JP, KR, MX, HK.
- 1.1: Issued on May 30, 2017 as U.S. Patent 9,663,535
- 1.2: Issued on May 29, 2018 as U.S. Patent 9,981,989
- 1.3: Issued on Feb. 5, 2019 as U.S. Patent 10,196,405

Family 2: ATR Inhibitors and Methods of Use

- Carboxylic acid-containing macrocyclic ATR inhibitors, and prodrugs; methods of using these inhibitors to treat various cancers; filed on Apr. 12th, 2017
- Issued on May 28th, 2019 as U.S. Patent 10,301,324

Family 3: ATR Inhibitor Pharmaceutical Composition and Methods

- International application filed on Apr. 14th, 2023
- Pharmaceutical formulation and composition of our lead molecule in the clinic
- Nationalizations pending for US, AU, BR, CA, CN, EA, EP, IL, IN, JP, KR, MX, NZ, PH, SG, ZA

Family 4: WEE1 Inhibitor Pharmaceutical Compositions and Methods

- International Application filed on Jun. 3rd, 2022
- Composition of our lead WEE1 inhibitor compounds
- Nationalizations in US, AU, BR, CA, CN, EP, IL, IN, JP, KR, MX, ZA

Family 5: Methods of Treating Cancer

- U.S. Provisional Application filed on Sep. 19th, 2024
- Clinical methods of treating advanced solid cancer tumors using lead molecule

Aprea Therapeutics (NASDAQ: APRE) Financial Summary & Capitalization

Cash & Equivalents of ~\$22.8M as of December 31, 2024

Closed approximately \$16.0M (before deducting placement agent fees and offering costs of approximately \$1.3M) from our private placement of our common stock in March 2024 with the potential to receive up to an additional \$18.0M upon cash exercise of accompanying warrants at the election of the investors.

Securities	Common Equivalents as of December 31, 2024
Preferred Stock (as converted)	28,112
Common Stock	5,481,055
Warrants: Pre-Funded Tranche A Tranche B Total	507,076 1,097,394 <u>1,097,394</u> 2,701,864
Options	715,620
Restricted Stock Units	29,712
Fully Diluted Equivalents	8,956,363

Investment Highlights

Technology developed by pioneers in synthetic lethality

Management with strong drug development and commercial expertise

Diversified portfolio with best in class, de-risked clinical and preclinical programs

- Highly potent and selective WEE1 (APR-1051) and ATR (ATRN-119) inhibitors
- Opportunities in ovarian, colorectal, prostate, and breast cancers
- Single agent and combination therapies

Near term catalysts

- H2 2025 open label data APR-1051; Complete dose escalation H1 2026
- H1 2025 open label data ATRN-119; Complete dose escalation H2 2025

Financed into Q4 2025

- Achieve short term inflection points and catalysts
- Evaluate optimal strategic partnerships

